Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Med Virol ; 95(1): e28122, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056655

RESUMO

The clinical manifestation of coronavirus disease 2019 (COVID-19) mainly targets the lung as a primary affected organ, which is also a critical site of immune cell activation by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, recent reports also suggest the involvement of extrapulmonary tissues in COVID-19 pathology. The interplay of both innate and adaptive immune responses is key to COVID-19 management. As a result, a robust innate immune response provides the first line of defense, concomitantly, adaptive immunity neutralizes the infection and builds memory for long-term protection. However, dysregulated immunity, both innate and adaptive, can skew towards immunopathology both in acute and chronic cases. Here we have summarized some of the recent findings that provide critical insight into the immunopathology caused by SARS-CoV-2, in acute and post-acute cases. Finally, we further discuss some of the immunomodulatory drugs in preclinical and clinical trials for dampening the immunopathology caused by COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/patologia , SARS-CoV-2 , Doença Aguda , Pulmão , Imunidade Inata , Progressão da Doença
3.
Curr Res Immunol ; 3: 110-117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35676924

RESUMO

Mycobacteria tuberculosis (M.tb) the causative agent for tuberculosis has been accredited for a high rate of morbidity and mortality worldwide. The rise in MDR and XDR cases has further created new obstacles in achieving the "End TB Strategy", which is aimed for 2035. In this article, we have demonstrated the potential of sphingosine-1-phosphate (S1P) analogs in providing an anti-mycobacterial effector response by altering macrophage polarity into M1. Among S1PR1 and S1PR3 analogs, S1PR2 analogs proficiently favor selective polarization of infected human macrophages into M1 phenotypes, marked by increased expression of M1 markers and decreased M2 markers. Furthermore, S1PR1-3 analogs treated macrophages were also able to decrease the secretion of anti-inflammatory cytokine IL-10 and can induce NO secretion in infected macrophages. Lastly, only S1PR2-3 analogs were able to restrict the growth of mycobacteria in human macrophages. Taken together our study reflects the potential of S1PR2-3 analogs in providing host defenses following mycobacterial infection by favoring M1 macrophage polarization.

4.
Eur J Immunol ; 52(5): 696-704, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35306661

RESUMO

The macrophages contribute to host defense against intracellular pathogens such as mycobacteria. Mycobacteria interact with macrophages altering their polarization state, which propagates establishment of infection. Thus, molecular macrophage properties in mycobacterial infections are critical both for understanding the biology of the infections as well as identifying therapeutic targets. Here, we review recent advances in the understanding how altered macrophage polarization in mycobacterial infections may lead to the design of targeted therapies that may reprogram these macrophages for enhanced mycobactericidal function.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Ativação de Macrófagos , Macrófagos/microbiologia
5.
Chem Biol Drug Des ; 99(6): 816-827, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35147279

RESUMO

Leishmaniasis is considered a tropical neglected disease, which is caused by an intramacrophagic parasite, Leishmania. It is endemic in 89 different countries. Autophagy-related protein 8 (Ldatg8) is responsible for the transformation of parasites from promastigote to amastigote differentiation. Ldatg8 is one of the key drug targets of Leishmania donovani (L. donovani) responsible for the defense of parasites during stress conditions. Virtual screening of natural ligand library had been performed against Ldatg8 to identify novel and potent inhibitors. Molecular docking and molecular dynamics simulation studies showed that urolithin A stably blocked Ldatg8. Urolithins are combinations of coumarin and isocoumarin. Further, we evaluated the antileishmanial effects of urolithin A by antileishmanial assays. Urolithin A inhibited the growth and proliferation of L. donovani promastigotes with an IC50  value of 90.3 ± 6.014 µM. It also inhibited the intramacrophagic parasite significantly with an IC50  value of 78.67 ± 4.62 µM. It showed limited cytotoxicity to the human THP-1 differentiated macrophages with a CC50  value of 190.80 ± 16.89 µM. Further, we assayed reactive oxygen species (ROS) generation and annexin V/PI staining upon urolithin A treatment of parasites to have an insight into the mechanism of its action. It induced ROS significantly in a dose-dependent manner, which caused apoptosis partially in parasites. The potential inhibitors for Ldatg8, identified in this study, would provide the platform for the development of an effective and affordable antileishmanial drug.


Assuntos
Antiprotozoários , Família da Proteína 8 Relacionada à Autofagia , Leishmania donovani , Antiprotozoários/química , Antiprotozoários/farmacologia , Família da Proteína 8 Relacionada à Autofagia/antagonistas & inibidores , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Cumarínicos/química , Cumarínicos/farmacologia , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/metabolismo , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo
6.
Br J Pharmacol ; 179(21): 4899-4909, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33150959

RESUMO

Mycobacterium tuberculosis (M. tb) is one of the successful pathogens and claim millions of deaths across the globe. The emergence of drug resistance in M. tb has created new hurdles in the tuberculosis elimination programme worldwide. Hence, there is an unmet medical need for alternative therapy, which could be achieved by targeting the host's critical signalling pathways that are compromised during M. tb infection. In this review, we have summarized some of the findings involving the modulation of host GPCRs in the regulation of the mycobacterial infection. Understanding the role of these GPCRs not only unravels signalling pathways during infection but also provides clues for targeting critical signalling intermediates for the development of GPCR-based host-directive therapy. LINKED ARTICLES: This article is part of GPCR Review Series. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/toc/10.1111/(ISSN)1476-5381.GPCRReviews.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Transdução de Sinais , Tuberculose/tratamento farmacológico
7.
Front Cell Infect Microbiol ; 11: 749420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778106

RESUMO

Background: Visceral leishmaniasis (VL), caused by the protozoan parasite Leishmania donovani (L. donovani), is the most severe form of leishmaniasis. It is largely responsible for significant morbidity and mortality in tropical and subtropical countries. Currently, available therapeutics have lots of limitations including high-cost, adverse side-effects, painful route of administration, less efficacy, and resistance. Therefore, it is time to search for cheap and effective antileishmanial agents. In the present work, we evaluated the antileishmanial potential of sesamol against promastigotes as well as intracellular amastigotes. Further, we tried to work out its mechanism of antileishmanial action on parasites through different assays. Methodology: In vitro and ex vivo antileishmanial assays were performed to evaluate the antileishmanial potential of sesamol on L. donovani. Cytotoxicity was determined by MTT assay on human THP-1-derived macrophages. Sesamol-induced morphological and ultrastructural changes were determined by electron microscopy. H2DCFDA staining, JC-1dye staining, and MitoSOX red staining were performed for reactive oxygen assay (ROS), mitochondrial membrane potential, and mitochondrial superoxide, respectively. Annexin V/PI staining for apoptosis, TUNEL assay, and DNA laddering for studying sesamol-induced DNA fragmentation were performed. Conclusions: Sesamol inhibited the growth and proliferation of L. donovani promastigotes in a dose-dependent manner. It also reduced the intracellular parasite load without causing significant toxicity on host-macrophages. Overall, it showed antileishmanial effects through induction of ROS, mitochondrial dysfunction, DNA fragmentation, cell cycle arrest, and apoptosis-like cell death to parasites. Our results suggested the possible use of sesamol for the treatment of leishmaniasis after further in vivo validations.


Assuntos
Leishmania donovani , Animais , Apoptose , Benzodioxóis/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fenóis/toxicidade
8.
Per Med ; 18(6): 583-593, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34649460

RESUMO

SARS-CoV-2, a recently emerged zoonotic virus, has resulted in unstoppable high morbidity and mortality rates worldwide. However, due to a limited knowledge of the dynamics of the SARS-CoV-2 infection, it has been observed that the current COVID-19 therapy has led to some clinical repercussions. We discuss the adverse effects of drugs for COVID-19 primarily based on some clinical trials. As therapeutic efficacy and toxicity of therapy may vary due to different, genetic determinants, sex, age and the ethnic background of test subjects, hence biomarker-based personalized therapy could be more appropriate. We will share our thoughts on the current landscape of personalized therapy as a roadmap to fight against SARS-CoV-2 or another emerging pathogen.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/terapia , Medicina de Precisão/métodos , Antivirais/uso terapêutico , Reposicionamento de Medicamentos , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade
10.
Front Immunol ; 11: 1102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670273

RESUMO

With the sudden outbreak of COVID-19 patient worldwide and associated mortality, it is critical to come up with an effective treatment against SARS-CoV-2. Studies suggest that mortality due to COVID 19 is mainly attributed to the hyper inflammatory response leading to cytokine storm and ARDS in infected patients. Sphingosine-1-phosphate receptor 1 (S1PR1) analogs, AAL-R and RP-002, have earlier provided in-vivo protection from the pathophysiological response during H1N1 influenza infection and improved mortality. Recently, it was shown that the treatment with sphingosine-1-phosphate receptor 1 analog, CYM5442, resulted in the significant dampening of the immune response upon H1N1 challenge in mice and improved survival of H1N1 infected mice in combination with an antiviral drug, oseltamivir. Hence, here we suggest to investigate the possible utility of using S1P analogs to treat COVID-19.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Síndrome da Liberação de Citocina/prevenção & controle , Indanos/uso terapêutico , Lisofosfolipídeos/agonistas , Oxidiazóis/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Animais , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , COVID-19 , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Camundongos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/prevenção & controle , Oseltamivir/uso terapêutico , Pandemias , SARS-CoV-2 , Esfingosina/agonistas
11.
Sci Rep ; 10(1): 57, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919477

RESUMO

To study the effect of insertion of azobenzene moiety on the spectral, morphological and fluorescence properties of conventional conducting polymers, the present work reports ultrasound-assisted polymerization of azobenzene with aniline, 1-naphthylamine, luminol and o-phenylenediamine. The chemical structure and polymerization was established via Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (1H-NMR) spectroscopy, while the electronic properties were explored via ultraviolet-visible (UV-vis) spectroscopy. Theoretical IR and UV spectra were computed using DFT/B3LYP method with 6-311G basis set while theoretical 1H-NMR spectra was obtained by gauge independent atomic orbital (GIAO) method. The theoretically computed spectra were found to be in close agreement with the experimental findings confirming the chemical as well as electronic structure of the synthesized polymers. Morphology was investigated by X-ray diffraction and transmission electron microscopy studies. Fluorescence studies revealed emission ranging between 530-570 nm. The polymers also revealed high singlet oxygen (1O2) generation characteristics. In-vitro antileishmanial efficacy as well as live cell imaging investigations reflected the potential application of these polymers in the treatment of leishmaniasis and its diagnosis.

12.
Protein Pept Lett ; 26(5): 371-376, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30827222

RESUMO

BACKGROUND: Leishmaniasis is caused by a protozoan parasite, Leishmania. It is common in more than 98 countries throughout the world. Due to insufficient availability of antileishmanial chemotherapeutics, it is an urgent need to search for new molecules which have better efficacy, low toxicity and are available at low cost. OBJECTIVES: There is a high rate of diabetic cases throughout the world that is why we planned to test the antileishmanial activity of glyburide, an effective sugar lowering drug used for the treatment of diabetes. In this study, glyburide showed a significant decrease in the parasite growth and survival in vitro in a dose-dependent manner. METHODS: Anti-leishmanial activity of glyburide was checked by culturing Leishmania donovani promastigotes in the presence of glyburide in a dose and time dependent manner. Docking study against Leishmania donovani-Trypanothione synthetase (LdTrySyn) protein was performed using Autodock Vina tool. RESULTS: Growth reversibility assay shows that growth of treated parasite was not reversed when transferred to fresh culture media after 7 days. Moreover, docking studies show efficient interactions of glyburide with key residues in the catalytic site of Leishmania donovani- Trypanothione synthetase (LdTrySyn), a very important leishmanial enzyme involved in parasite's survival by detoxification of Nitric Oxide (NO) species, generated by the mammalian host as a defense molecule. Thus this study proves that the drug-repurposing is a beneficial strategy for identification of new and potent antileishmanial molecules. CONCLUSION: The results suggest that glyburide binds to LdTrySyn and inhibits its activity which further leads to the altered parasite morphology and inhibition of parasite growth. Glyburide may also be used in combination with other anti-leishmanial drugs to potentiate the response of the chemotherapy. Overall this study provides information about combination therapy as well as a single drug treatment for the infected patients suffering from diabetes. This study also provides raw information for further in vivo disease model studies to confirm the hypothesis.


Assuntos
Antiprotozoários/farmacologia , Glibureto/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Amida Sintases/química , Antiprotozoários/uso terapêutico , Domínio Catalítico , Reposicionamento de Medicamentos , Glibureto/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Proteínas de Protozoários/química
13.
PLoS Negl Trop Dis ; 12(8): e0006647, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30118478

RESUMO

BACKGROUND: Sphingosine-1-phosphate (S1P) is a crucial regulator of a wide array of cellular processes, such as apoptosis, cell proliferation, migration, and differentiation, but its role in Leishmania donovani infection is unknown. METHODOLOGY/ PRINCIPAL FINDINGS: In the present study, we observed that L. donovani infection in THP-1 derived macrophages (TDM) leads to decrease in the expression of S1pr2 and S1pr3 at mRNA level. We further observed that Leishmania infection inhibits the phosphorylation of sphingosine kinase 1 (sphK1) in a time-dependent manner. Exogenous S1P supplementation decreases L. donovani induced ERK1/2 phosphorylation and increases p38 phosphorylation in TDM, resulting in a decrease in the intracellular parasite burden in a dose-dependent manner. On the other hand, sphK inhibition by DMS increases ERK1/2 phosphorylation leading to increased IL-10 and parasite load. To gain further insight, cytokines expression were checked in S1P supplemented TDM and we observed increase in IL-12, while decrease IL-10 expression at mRNA and protein levels. In addition, treatment of antagonist of S1PR2 and S1PR3 such as JTE-013 and CAY10444 respectively enhanced Leishmania-induced ERK1/2 phosphorylation and parasite load. CONCLUSIONS: Our overall study not only reports the significant role of S1P signaling during L. donovani infection but also provides a novel platform for the development of new drugs against Leishmaniasis.


Assuntos
Leishmania donovani/fisiologia , Lisofosfolipídeos/metabolismo , Macrófagos/parasitologia , Esfingosina/análogos & derivados , Animais , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Lisofosfolipídeos/genética , Macrófagos/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/genética , Esfingosina/metabolismo
14.
J Cell Biochem ; 119(3): 2653-2665, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29058760

RESUMO

Leishmania, a protozoan parasite that causes leishmaniasis, affects 1-2 million people every year worldwide. Leishmaniasis is a vector born disease and characterized by a diverse group of clinical syndromes. Current treatment is limited because of drug resistance, high cost, poor safety, and low efficacy. The urgent need for potent agents against Leishmania has led to significant advances in the development of novel antileishmanial drugs. ß-galactofuranose (ß-Galf) is an important component of Leishmanial cell surface matrix and plays a critical role in the pathogenesis of parasite. UDP-galactopyranose mutase (UGM) converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf) which acts as the precursor for ß-Galf synthesis. Due to its absence in human, this enzyme is selected as the potential target in search of new antileishmanial drugs. Three dimensional protein structure model of Leishmania major UGM (LmUGM) has been homology modeled using Trypanosoma cruzi UGM (TcUGM) as a template. The stereochemistry was validated further. We selected already reported active compounds from PubChem database to target the LmUGM. Three compounds (6064500, 44570814, and 6158954) among the top hit occupied the UDP binding site of UGM suggested to work as a possible inhibitor for it. In vitro antileishmanial activity assay was performed with the top ranked inhibitor, 6064500. The 6064500 molecule has inhibited the growth of Leishmania donovani promastigotes significantly. Further, at similar concentrations it has exhibited significantly lesser toxicity than standard drug miltefosine hydrate in mammalian cells.


Assuntos
Antiprotozoários/farmacologia , Transferases Intramoleculares/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Humanos , Transferases Intramoleculares/metabolismo , Leishmania donovani/enzimologia , Leishmaniose , Macrófagos/efeitos dos fármacos , Simulação de Dinâmica Molecular , Proteínas de Protozoários/efeitos dos fármacos , Proteínas de Protozoários/metabolismo
15.
ACS Appl Mater Interfaces ; 9(38): 33159-33168, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28875693

RESUMO

There has been a steady progress in the development of doped conjugated polymers to remarkably improve their photo physical properties for their application as biomarkers. With a view to enhance the spectral, morphological, and photo physical properties of poly(o-phenylenediamine) (POPD), the present work reports the synthesis of poly(o-phenylenediamine) and doping of this polymer using luminol. The formation of luminol-doped POPD was confirmed by infrared and ultraviolet-visible spectroscopies and X-ray diffraction studies. The energy band gap values and oscillator strength of luminol in acidic, basic, and neutral media were computed by density functional theory calculations using the B3LYP/6-31G (d) basis set and were compared with experimental data. The luminol doped POPDs show significant in vitro anti-leishmanial activity. Live cell imaging also proved that these molecules bind with the organelle of Leishmania also. These luminol doped POPDs were found non-toxic at the used concentrations on THP-1 derived human macrophage cells through methyl tetrazolium (MTT) assay. The results revealed that luminol doped POPDs were potentially non-toxic to human cells though exhibited immense potential to be used as a fluorescent marker to label Leishmania donovani for diagnostic and other studies.

16.
J Recept Signal Transduct Res ; 37(5): 437-446, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28758826

RESUMO

Sphingosine-1-phosphate signaling is emerging as a critical regulator of cellular processes that is initiated by the intracellular production of bioactive lipid molecule, sphingosine-1-phosphate. Binding of sphingosine-1-phosphate to its extracellular receptors activates diverse downstream signaling that play a critical role in governing physiological processes. Increasing evidence suggests that this signaling pathway often gets impaired during pathophysiological and diseased conditions and hence manipulation of this signaling pathway may be beneficial in providing treatment. In this review, we summarized the recent findings of S1P signaling pathway and the versatile role of the participating candidates in context with several disease conditions. Finally, we discussed its possible role as a novel drug target in different diseases.


Assuntos
Lisofosfolipídeos/metabolismo , Terapia de Alvo Molecular , Transdução de Sinais/genética , Esfingosina/análogos & derivados , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Ceramidases/genética , Ceramidases/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Humanos , Lisofosfolipídeos/genética , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/uso terapêutico , Esfingosina/genética , Esfingosina/metabolismo
17.
Drug Discov Today ; 21(1): 133-142, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26456576

RESUMO

Sphingosine-1-phosphate (S1P) signaling is reported in variety of cell types, including immune, endothelial and cancerous cells. It is emerging as a crucial regulator of cellular processes, such as apoptosis, cell proliferation, migration, differentiation and so on. This signaling pathway is initiated by the intracellular production and secretion of S1P through a cascade of enzymatic reactions. Binding of S1P to different S1P receptors (S1PRs) activates different downstream signaling pathways that regulate the cellular functions differentially depending upon the cell type. An accumulating body of evidence suggests that S1P metabolism and signaling is often impaired during infectious diseases; thus, its manipulation might be helpful in the treatment of such diseases. In this review, we summarize recent advances in our understanding of the S1P signaling pathway and its candidature as a novel drug target against infectious diseases.


Assuntos
Anti-Infecciosos/farmacologia , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/metabolismo , Lisofosfolipídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo
18.
Biochimie ; 113: 111-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25890158

RESUMO

Receptors on cell membrane bind to their respective ligands and transduce intracellular signals resulting in variety of effector functions. Membrane lipid composition determines the receptor signaling behavior, as the receptors assume different conformation to suit the biochemical milieu in its immediate vicinity in the membrane. Accordingly, these accommodate different signaling intermediates that dictate the course of intracellular signaling and the resulting effectors functions. In this review we provide an overview of how membrane lipids modulate membrane-properties, membrane-receptor functions and their significance in the host-pathogen interaction.


Assuntos
Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos
19.
Microbes Infect ; 15(10-11): 649-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23811020

RESUMO

Host-lipidome caters parasite interaction by acting as first line of recognition, attachment on the cell surface, intracellular trafficking, and survival of the parasite inside the host cell. Here, we summarize how protozoan parasites exploit host-lipidome by suppressing, augmenting, engulfing, remodeling and metabolizing lipids to achieve successful parasitism inside the host.


Assuntos
Apicomplexa/metabolismo , Interações Hospedeiro-Parasita , Metabolismo dos Lipídeos , Trypanosomatina/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...